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Abstract

Understanding the heterogeneity in worldwide temperatures is important for pre-
dicting future dynamics in climate change and guide policy. In this paper, we propose
analytical methods to analyze the dynamics of extreme temperatures and, in particu-
lar, to detect the presence of time trends in the tail parameters driving the tail decay
of the distribution of annual temperatures. As a byproduct, we study the perfor-
mance of Hill type estimators of the tail parameter under the presence of different
location effects and propose a version of the estimator obtained from the standardized
order statistics that performs better in finite samples. Our empirical results for the
analysis of eight regions covering the Globe over the period 1960 to 2022 show clear
heterogeneity in the warming process of extreme temperatures. We find four patterns
in the warming process of extreme temperatures. The extreme positive temperatures
of North America, Asia and the Antarctic region are trending up faster than for the
remaining regions. Europe, Africa and the Arctic region do not exhibit warming in
the extremes despite a steady increase in their quantiles suggesting that the warming
process takes place in the low and high quantiles and not in the extremes. South
America and Australia show warming of extreme temperatures in the left tail but no
warming on the right tail. In fact, for these regions the dispersion in the distribu-
tion of temperatures is falling over time. All these findings provide some evidence of
geographical clustering in the evolution of extreme temperatures over time.
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1 Introduction

Growing empirical evidence of a gradual warming trend in global mean temperature (Hansen

and Lebedeff, 1987, 1988) has led to a heightened awareness of human-induced climate

change through pollution and carbon emissions. This evidence is not only observed for

mean temperatures but across different distributional characteristics (see Gadea and Gon-

zalo (2020, 2024), GG2020 and GG2024 hereafter) indicating that warming is a global

phenomenon. These authors also find that the occurrence of global warming is hetero-

geneous and takes place at different speeds across quantiles and regions. In particular,

GG2020 find an increasing trend in all distributional characteristics (time series and cross-

sectional) when analyzing temperatures from all available weather stations in the Globe.

The trend is for most regions larger in the lower quantiles than in the mean, median, and

upper quantiles. Relatedly, there is a negative trend in the characteristics that measure dis-

persion such as the standard deviation and the interquartile range (i.e., lower temperatures

approach the median faster than higher temperatures do). GG2024 extend this study by

considering different regions separately. These authors also introduce the idea of geographic

heterogeneity in the warming process and define four different types of warming based on

the type of trend the quantile process exhibits. These authors do not study, though, the

presence of trends in the dynamics of extreme temperatures below the 5% quantile and

beyond the 95% quantile. Therefore, the conclusions of this study cannot fully reveal the

presence of warming in the extreme temperatures and whether the dynamics of these ob-

servations show geographical heterogeneity that can reveal important insights about what

sort of extreme events different regions can expect as a result of a warming planet. The

aim of the current study is to address these questions.

Extreme events act as a catalyst for concern about whether the climate is changing.

Assessments of the economic impacts of global climate change have usually focused on

averages, rather than on variability or extremes (Adams et al, 1990), but the primary

impacts of climate on society result from extreme events, a reflection of the fact that

climate is inherently variable. In spite of the need to examine how the frequency of extreme

events might change as the mean climate changes (Wigley, 1985; Mitchell et aL, 1990),

attempts to quantify the nature of such relationships have been rare (Mearns et al, 1984;

Wigley, 1988). Katz and Brown (1992) is one of the first examples to study the relative

sensitivity of extreme events to the mean and variability (more generally, the location and

scale parameters) of climate. In their pioneering study, these authors find that extreme

events are relatively more sensitive to the variability of climate than to its average and
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this sensitivity is relatively greater the more extreme the event. To do this, these authors

consider a model in which climate change is envisioned to involve a combination of two

different statistical operations given by a change in location or a change in scale parameter.

GG not only consider changes in these parameters but also the presence of time trends

strengthening the impact and severity of climate change.

Following the work of Katz and Brown (1992) and GG2020, we aim to extend their

analyses of distributional characteristics by focusing on the dynamics of extremes. We

focus on the tail parameter that fully characterizes the behavior of the distribution in the

tails, see Embrechts, Kluppelberg and Mikosch (1997). Our aim is to understand if the

increased likelihood of extreme events recently observed in climate variables is due to the

positive trends in distributional characteristics such as the mean and the quantile process,

as observed in GG2020 and GG2024, or to the increase of extreme termperatures. We aim

to capture these increases in the form of time trends in the tail parameter estimates. To

do this, we adapt the tests developed in GG2020 and GG2024 to assess statistically the

presence of trends and cotrends of unknown form in the tail parameter. In order to apply

these tests, we replace the distributional characteristics with the empirical counterparts

given by consistent estimates of the shape parameter. This parameter is specific to each

tail and fully characterizes the pattern of tail decay and, therefore, the fatness of the tail.

We focus on the Hill (1975) estimator and the efficient regression-based estimator developed

in Gabaix and Ibragimov (2012) of the tail parameter (see also Rosen and Resnick (1980);

Gabaix (1999); Gabaix and Ioannides (2004), among others).

Our second contribution is to study the finite-sample effects of estimating the tail pa-

rameter directly from location-scale transformations of the distribution generating the tail

events and not from standardized versions of the data. This is a necessary step to be

able to identify the source of dynamics in extreme events. These dynamics can be due to

location-scale shifts of the parent distribution of observations over time, to increases in the

likelihood of extreme events (heavier tails) once location-scale effects are controlled for or

to both. To do this, we study the performance of Hill and regression-based estimators of

the tail parameter in location-scale families of distributions. We derive analytically the

presence of a wedge in the Hill estimator obtained from raw and standardized versions

of the order statistics. This effect vanishes asymptotically as both versions of the Hill

estimator provide consistent estimates of the tail parameter as the sample size increases,

however, we analytically derive potentially sizeable differences between versions of the es-

timators due to location effects. These insights are illustrated in a simulation study with
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data obtained from Student-t distributions with different degrees of freedom. The empirical

results provide evidence of finite-sample differences in the estimation of the tail parameter

even for very large sample sizes. The estimators of the tail parameter obtained from stan-

dardized order statistics outperform the estimators obtained from the raw sequences if the

location parameter is large in magnitude. For small values of the location parameter the

estimates obtained from the unstandardized estimators are comparable and even superior

to the standardized ones. However, the results are not uniform across tail behaviors, thus,

we find overwhelming support for the standardized versions of the Hill estimator for heavy

tailed distributions whereas the unstandardized estimators perform better as the tail decay

approaches the exponential case.

These methods are applied in an empirical application to eight regions (the Antarctic

region, the Arctic, Africa, Asia, Australia, Europe, North America and South America)

covering the Globe over the period 1960 to 2022. Using a panel of observations on monthly

temperatures from a large cross section of weather stations, we estimate the tail parameters

from cross-sectional distributions applied to each of these regions and obtain time series of

tail parameter estimates for each tail of the distribution. Our empirical results show clear

heterogeneity in the warming process of extreme temperatures across regions. There are,

however, four clear patterns that seem related to the geographical location of the regions

under investigation. Thus, North America, Asia and the Antarctic region are affected

by a warming process that we denominate of type WE2 and corresponds to warming in

the extreme positive temperatures whereas the extreme temperatures in the left tail do

not show evidence of warming. In contrast, the Polar region, Europe and Africa do not

exhibit warming in the extremes despite the steady increase in their quantiles found in

GG2020. In the Southern hemisphere, the warming process of extreme temperatures for

South America and Australia is observed in the left tail and is characterized by milder

minimum temperatures compared to previous years. The evidence obtained from the tail

parameter estimates for this tail suggests that extreme negative quantiles trend faster to

the right of the distribution than the process of low quantiles. We denominate the type

of warming observed in the left tail as WE1. In contrast, for these regions, the dynamics

of positive extreme temperatures show evidence of the opposite, that is, the trend of the

tail parameter is negative indicating a stronger trend for high quantiles than for extreme

quantiles. This phenomenon can be interpreted as evidence of no extreme warming in the

right tail.

The paper is structured as follows. Section 2 reviews basic results on EVT and tail
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behavior under Pareto type approximations. Section 3 applies the results on EVT to

time series and introduces several definitions of warming in the extremes. The section

also discusses several tests to detect the presence of trends of general form in distributional

characteristics. In our framework, we focus on modeling the dynamics of the tail parameter.

Section 4 reviews popular estimators of the tail parameter such as the Hill estimator and

regression-based estimators, and derives analytically and numerically the presence of finite-

sample discrepancies between versions of these estimators constructed from unstandardized

and standardized sequences of order statistics. Section 5 presents an empirical application

to a panel of monthly temperatures for analyzing the dynamics of the tail parameter in

both tails of the distributions. We divide the Globe into eight regions and construct time

series estimates of the tail parameters obtained from cross-sectional data on temperatures

recorded from weather stations. We analyze the warming patterns of extreme temperatures

in both tails and classify the regions according to their warming type. Section 6 concludes.

Tables and figures are found at the end of the document.

2 Background theory

This section introduces some background theory required to understand the models and

methods introduced below.

2.1 Basic results on extreme value theory

Extreme Value Theory (EVT) studies the limiting distribution of the standardized maxima

(and minima) of a random sample {Xi}ni=1 of size n. Let Mn = max{X1, . . . , Xn} be the

sample maximum and let F (x) denote the probability law generating such observations.

Gnedenko (1943) and de Haan (1976) characterize the lim.iting distribution of the stan-

dardized maximum. More formally, there are normalizing sequences an and bn such that

P{a−1
n (Mn−bn) ≤ x} → G(x), as n→ ∞, with G(x) = e−τ(x). This result is further refined

depending on the maximum domain of attraction of the parent distribution F (x). Thus,

τ(x) can only be of three forms: (i) Type I (Gumbel): τ(x) = e−x for x ∈ (−∞,∞); (ii)

Type II (Fréchet): τ(x) = xξ for x > 0 and ξ > 0; (iii) Type III (Weibull): τ(x) = −(−x)−ξ

for x < 0 and ξ < 0. The three types of extreme value distributions can be expressed in the

so-called Generalized Extreme Value Distribution, first proposed by von Mises (1936), and

given by G(x) = e−τ(x) with τ(x) =
(
1 + 1

ξ
x
)−ξ

for ξ ̸= 0, and τ(x) = e−x, for ξ = 0. The

distribution of the standardized maximum is fully characterized by the shape parameter ξ.
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This parameter is the inverse of the so-called tail index used in the EVT literature. For

notational convenience, we will hereafter use tail parameter to refer to the shape parameter

ξ introduced above and ttail index ψ to refer to its inverse.

The above asymptotic results for the distribution of the maximum for independent and

identically distributed (iid) data also implies the following approximation n(1 − F (anx +

bn)) → τ(x),for an and bn suitable sequences and x sufficiently large. The function τ(x)

and, in particular, the tail parameter ξ determine the behavior of the distribution in the

right tail. Broadly speaking, a positive value of the tail parameter indicates a polynomial

decay of the distribution in the tail and, hence, the presence of heavy tails. More formally,

a heavy-tailed distribution is defined as a distribution function F (x) such that

1− F (x) = x−ξL(x), (1)

where L(x) is a slowly varying functon satisfying lim
t→∞

L(tx)
L(t) = 1 for x > 0. Values of ξ in

the interval (0, 20) are usually identified with the presence of heavy tails and the scenario

ξ > 20 corresponds to a tail with exponential decay. The case ξ ≤ 2 corresponds to

very heavy tailed distribution functions characterized by infinite variance, and ξ ≤ 1 by a

distribution function with no mean. Interestingly, for the Student-t family of distributions,

the tail parameter coincides with the degrees of freedom coefficient.

Remark 1: The above asymptotic results show that location-scale transformations of the

parent distribution F (x) do not affect its tail behavior. Location and scale parameters are

incorporated in the asymptotic results through suitable transformations of the sequences

an and bn.

Remark 2: Let Y = µ+σX denote a location (µ) - scale (σ) transformation of the standard

random variable X. Let Fx be the distribution function of X that satisfies condition (1).

It follows that

1− Fy(y) = 1− Fx

(
y − µ

σ

)
=

(
y − µ

σ

)−ξ

L
(
y − µ

σ

)
, (2)

for y > µ+ σ. The tail of the parent distribution F (y) can be approximated by the tail of

a Pareto distribution for y sufficiently large.

Remark 2 shows that the probability of extreme events in location-scale models is com-

pletely characterized by the location and scale parameters µ and σ, respectively, and the

tail parameter ξ. To show this, let x > 0 denote an extreme positive event associated
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to the random variable X. Following expression (1), the probability of the extreme event

is P{X > x} ≈ x−ξR , with ξR the tail parameter driving the behavior in the right tail.

Under a location-scale transformation of the random variable, the probability of the same

extreme event is P{Y > x} ≈
(
x−µ
σ

)−ξR
. The probability increases with the location and

scale parameters and decreases with the tail parameter ξ. In contrast, the probability of

an extreme event of same magnitude −x in the left tail is P{X ≤ −x} ≈ x−ξL where ξL

denotes the tail parameter driving the behavior in the left tail. Similarly, for the location-

scale transformation, it follows that P{Y ≤ −x} ≈
(
x+µ
σ

)−ξR
. In contrast to the right

tail, for the left tail, the probability of extreme events decreases as the location parameter

rises. The relationship between the other two parameters (scale and tail behavior) and the

probability of positive extremes is the same as for the right tail.

3 Modeling dynamics in extreme temperatures

The above results modeling the probability of extreme events can be adapted to modeling

the dynamics of extreme temperatures over time. In GG2020 temperature is viewed as a

functional stochastic process X = (Xt(ω), t ∈ T ), where T is an interval in R defined in a

probability space (Ω,ℑ, P ). A convenient example of an infinite-dimensional discrete-time

process consists of associating ν = (νn, n ∈ R+) with a sequence of random variables whose

values are in an appropriate function space. This may be obtained by setting

Xt(n) = νt,N+n, 0 ≤ n ≤ N, t = 0, 1, 2, . . . , T

so X = (Xt, t = 0, 1, 2, . . . , T ). If the sample paths of ν are continuous, then we have a

sequence X0, X1, . . . of random variables in the space C[0, N ]. In this case t will be the

period of a year, and N represents cross-sectional units (climate stations recording data).

In contrast to GG2020 and GG2024 that focus on modeling a battery of distributional

characteristics such as the mean, median and quantile process, our interest in this paper

is in modeling the tail behavior of the sequence of distribution functions (Fy1, . . . , FyT ).

This is given by the sequence of tail parameters (ξ1(ω), . . . , ξT (ω)). These distributional

characteristics can be considered time series objects and, therefore, all the econometric

tools already developed in the time series literature can be applied to ξt(ω).

Following the above results, the probability of extreme temperatures in the left tail at

time t is modeled as

P{Xt ≤ −x} = CL

(
x+ µt

σt

)−ξLt

(3)
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where µt and σt denote the time-varying location and scale parameters, respectively, ξLt

denotes the tail parameter characterizing the behavior in the left tail and CL is a suitable

constant. Similarly, the probability of extreme temperatures in the right tail at time t is

modeled as

P{Xt > x} = CR

(
x− µt

σt

)−ξRt

(4)

with ξRt denoting the tail parameter characterizing the behavior in the right tail and CR a

suitable constant.

GG2020 define warming as an increasing trend in certain characteristics of the tem-

perature distribution. More precisely, warming is defined as the existence of an increasing

trend in some of the characteristics measuring the central tendency or position (quantiles)

of the temperature distribution. GG2024 introduce three characterizations of the warm-

ing process depending on the relative speed across quantiles qt(τ), with τ ∈ (0, 1), of the

location parameters associated to each τ driving their dynamics. More formally,

Definition 1 (Typology of warming process):

• W0: There is no trend in any of the quantiles (No warming).

• W1: All the location distributional characteristics have the same positive trend (dis-

persion does not contain a trend).

• W2: The Lower quantiles have a larger positive trend than the Upper quantiles

(dispersion has a negative trend).

• W3: The Upper quantiles have a larger positive trend than the Lower quantiles

(dispersion has a positive trend).

Following these characterizations of the warming process, we introduce further charac-

terizations based on the behavior of the process of temperatures in the extremes. Note that

the approach used by GG2020 and GG2024 is silent about the dynamics of extreme events

as their methods are not devised to capture the behavior of temperatures in the extremes.

In this paper, we capture these dynamics through the evolution of the tail parameter over

time. This is formalized in the following definition.

Definition 2 (Warming Extremes): We define three possible warming scenarios char-

acterized by extreme temperatures:
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• WE0: There is no trend in any of the tail parameters ξLt and ξRt .

• WE1: The tail parameter ξLt has a positive trend.

• WE2: The tail parameter ξRt has a negative trend.

WE0 describes a scenario with no warming in the extreme temperatures. The likelihood

of extreme events remains constant over time and is characterized by the tail parameter

ξL; WE1 characterizes a scenario given by warming in the extreme temperatures in the left

tail. An increase in the tail parameter over time implies a decrease in the fatness of the tail

and, therefore, a smaller probability of the tail event. This relationship can be observed

from expression (3) for fixed values of µ and σ. Similarly, WE2 characterizes a scenario

given by an increase in the extreme positive temperatures over time. These scenarios can

be related to the types of warming defined in GG2024.

Proposition 1: Let W0−W3 be the warming scenarios introduced in Definition 1. Then,

W1 ⇒ WE0; W2 ⇒ WE1; W3 ⇒ WE2.

The proof of these results is as follows. W1 ⇒ WE0 follows from observing that W1

implies the same location effect affecting all quantiles of the distribution of temperatures.

Remark 1 shows that this type of effects does not have an impact on the tail decay of the

parent distribution. To prove W2 ⇒ WE1, we note that scenario W2, taken at face value,

entails a warming process in which the extreme quantiles in the left tail of the distribution

(qt(τ), for τ ≈ 0) trend up faster than the low quantiles characterized by τ
′
> τ . This

implies a reduced dispersion in the left tail of the distribution and, hence, an increase of the

tail parameter ξLt over time (decrease in the tail index). WE1 implies a warming process

for the extreme temperatures characterized by minimum temperatures rising faster than

the rest. Finally, to show the condition W3 ⇒ WE2, we note that Scenario W3, taken at

face value, implies the opposite. The high quantiles (qt(τ)) drift apart from the extreme

quantiles (qt(τ
′
), for τ

′ ≈ 1 and τ < τ
′
) in the right tail such that the tail parameter

ξRt decreases over time (tail index increases). In this type of warming extreme positive

temperatures become more frequent and the likelihood of even more extreme temperatures

also increases over time.

Interestingly, the warming scenarios W0 − W3 are mutually exclusive, however, our

characterization of the warming process in the extremes allows for WE1 and WE2 to take

place simultaneously as these phenomena refer to different tails. We can observe two types
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of warming in the extremes for the same region. A particularly concerning scenario is

given by WE1 and WE2 together. Importantly, the empirical application of the methods

in GG2020 and GG2024, and Definition 1 above, do not span below the quantiles τ = 0.05

and beyond τ = 0.95. Therefore, the methodology proposed in these papers is not able to

capture the presence of trends in extreme events. In this paper, we address this shortcoming

by modeling the presence of trends in the extremes through the tail parameters ξLt and ξRt .

To do this, we adapt the definition of Warming in GG2024.

Definition 3: The tail parameter ξt obtained from the sequence of distribution functions

Ft(·) contains a trend if in the LS regression,

ξt = α + βt+ ut, t = 1, . . . T, (5)

the hypothesis H0 : β = 0 is rejected. This hypothesis can be tailored to specify if the

trend is positive or negative.

Importantly, GG2020 shows that a simple t-test for the hypothesis β = 0 is able to

detect most of the existing deterministic trends (polynomial, logarithmic, exponential, etc)

and also the trends generated by any of the three standard persistent processes considered

in the literature: (i) fractional or long-memory models (1/2 < d < 3/2); (ii) near-unit-root

AR models; and (iii) local-level models. Furthermore, if the regression (5) is the true data-

generating process, with ut a stationary process, then the distribution of the t-test under

the null hypothesis is N(0, 1). GG2020 recommend to use a robust HAC version of the

t-test.

Using a similar methodology, we adapt the above definition to detect the presence of

cotrending in tail behavior across different regions.

Definition 4: The tail parameters ξxt and ξyt obtained from the sequence of distribution

functions F x
t (·) and F

y
t (·) are cotrended if in the LS regression,

ξxt − ξyt = α + γt+ ut, t = 1, . . . T, (6)

the hypothesis H0 : γ = 0 is rejected.

This method can be adapted to test symmetry in tail behavior over time for a single

sequence of distribution functions. Empirically, this is not relevant for the purpose of this

study since extreme warming in each tail is characterized by tail parameters of different

sign.
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4 Estimation of the tail parameters

The above methods are unfeasible in practice since the sequence of tail parameters is not

observed. Following GG2020, we propose to estimate these parameters using cross-sectional

information from climate stations around the Globe. We assume the data on temperatures

to be iid and is used to estimate the tail parameters ξLt and ξRt from a sample of N

observations. By doing so, we construct a time series of estimates (ξ̂1, . . . , ξ̂T ) that is used

for testing for the presence of trends in both tails.

4.1 Review of popular estimators

Estimation of the tail parameter is cumbersome as it depends, for most estimators, on a

nuisance parameter that establishes the number of observations defining the tail of the dis-

tribution. Despite this difficulty or perhaps because of it, the EVT literature has developed

more than one hundred estimators, see Fedotenkov (2018). Early and popular estimators

such as the Hill (1975) and Pickands (1975) estimators are derived as conditional maximum

likelihood estimators of Pareto and Generalized Pareto distributions, respectively, fitting

the tails of a broad class of parent distributions. The version of the Hill estimator for the

shape parameter ξR introduced above is

ξ̂RH =

[
1

k

k∑
i=1

log (xi:n/xk+1:n)

]−1

, (7)

where x1:n > . . . > xk+1:n denote the first k + 1 order statistics of the random sample

(x1, . . . , xn). The order statistic xk+1:n can be interpreted as the threshold value that

determines the Pareto behavior in the tail of the parent distribution. Hill’s estimator

is consistent for ξ > 0 under suitable choices of xk+1:n as long as the latter sequence is

characterized by the intermediate sequence k → ∞ with k/n → 0 as n → ∞. Pickands’

(1975) estimator of the tail parameter ξR is defined as

ξ̂RP (i) =
log(2)

log ((xi:n − x2i:n)/(x2i:n − x4i:n))
, for i = 1, . . . , k. (8)

In constrat to Hill estimator, Pickands’ estimator is consistent for any ξ ∈ R and interme-

diate sequence k → ∞ with k/n→ 0. Another important advantage of the latter estimator

is its invariance under shift and scale transformations of the observations. A refined version

of the estimator (8) is provided by Drees (1995). This author introduces an estimator of ξR
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that is constructed as a weighted mixture of Pickands’ estimators computed over different

values of i = 1, . . . , k. The weights are generated by a probability measure which satisfies

certain integrability condition. Unfortunately, the finite-sample performance of Pickand’s

type estimators is not very satisfactory in small and moderate sample sizes.

Other well known consistent estimators of the tail index based on the above estima-

tors are the moment estimator of Dekkers, Einmahl and de Haan (1989), the method of

moments ratio estimator proposed in Danielsson, Jansen and De Vries (1996), and more

recently, the generalized least square estimator of Aban and Meerschaert (2004) and the

least squares estimator of Tripathi (2014). A shortcoming common across these methods

is their questionable performance in small samples. Huisman et al (2001) correct for the

small-sample biases in these methods by constructing a weighted average of a sequence of

tail index estimators obtained from different thresholds xk+1:n.

An alternative approach to estimate the tail parameter is to plot the statistic of interest

against a number of the sample upper-order statistics and then infer an appropriate value

for the tail index from the properties of the resulting graph (Kratz and Resnick, 1996;

Beirlant et al., 1996). Inspired by this approach, regression-based estimation methods have

attracted considerable attention among empirical researchers. One such alternative is the

OLS-based log-log rank-size regression (Rosen and Resnick, 1980 and Gabaix, 1999) that

is given by the OLS estimator from the regression

log(i− γ) = α0 − ξRlogxi:n + εi, with i = 1, . . . , k, (9)

with γ = 0 and εi an error term. The statistical properties of the OLS estimators of

equation (9) have been analyzed in Gabaix and Ioannides (2004) and Gabaix and Ibragimov

(2012). The latter authors also propose an optimal version of this type of estimators given

by considering γ = 1/2. A shortcoming of most of these methods is their sensitivity to

location transformations of the data. This is studied in more detail below. A notable

exception is the recent regression-based estimator of Nicolau and Rodrigues (2019). These

authors provide an important improvement over the above estimators by reducing the bias,

being resilient to the choice of the tail length and accommodating time dependence in the

data. Nevertheless, we focus on the most popular estimators so far given by Hill type

estimators and regression-based estimators of the tail parameter.
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4.2 Finite-sample effects on tail parameter estimates

The above battery of estimators of the tail parameter are statistically consistent, implying

their convergence in probability to the true parameter as the sample size increases. There

are, however, relevant finite-sample effects1 that hold even in very large samples due to

the slow convergence rate (
√
k) of most estimators that may conflict with large values

of the location parameters under the presence of time trends. These trends appear as

time fixed effects in the panel structure of our data. As mentioned above, estimation is

done using cross-sectional information only and assuming that the distribution function of

cross-sectional temperatures varies over time.

In what follows, we explore the role of the location and scale parameter in more detail

and derive the finite-sample differences between the versions of the Hill estimator obtained

from standardized and unstandardized data. Let Y = µ + σX denote a random variable

with mean µ and variance σ, and let X be the standardized counterpart. Similarly, let

y1:n > . . . > yk+1:n and x1:n > . . . > xk+1:n denote the sequence of order statistics of Y and

X, respectively, with xi:n = (yi:n − µ)/σ, for i = 1, . . . , n. For analytical convenience, we

operate with the inverse of the tail parameter ξR that is denominated in the EVT literature

as tail index and denoted hereafter as ψR ≡ 1/ξR.

The Hill estimator applied to the tail index ψR and obtained from an iid realization

of the random variable Y is given by ψ̂R
H = 1

k

k∑
i=1

log (xi:n/xk+1:n) whereas the estimator

constructed from the standardized version of the order statistics, denoted as ψ̂sR
H is defined

similarly and satisfies that

ψ̂R
Hs =

1

k

k∑
i=1

log
yi:n − µ̂

σ̂
− log

yk+1:n − µ̂

σ̂
= ψ̂R

H +
1

k

k∑
i=1

log

(
1− µ̂

yi:n

)
− log

(
1− µ̂

yk+1:n

)
,

(10)

with µ̂ and σ̂ denoting consistent estimators of the location and scale parameters µ and σ,

respectively. Simple algebra shows that the estimator ψ̂R
Hs can be decomposed as

ψ̂R
Hs = ψ̂R

H + ψ̂R
u + ψ̂R

r , (11)

with ψ̂R
u = 1

k

k∑
i=1

log ui:n

uk+1:n
, where ui:n = 1−µ/yi:n, for i = 1, . . . , k+1. There is an additional

1See Aban and Meerschaertt (2001) that propose a shifted Hill estimator that is more robust for esti-
mating the tail decay of heavy-tailed distributions.
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term in the decomposition given by ψ̂R
r = 1

k

k∑
i=1

log ri:n
rk+1:n

, with ri:n = 1− (µ̂− µ)/(xi:n − µ),

that captures the estimation of the location and scale parameters in the tail index estimator.

The latter term, as formalized below, converges to zero in probability if the estimator of

the location parameter µ̂ converges to µ at a rate higher than
√
k. Standard parametric

estimators such as the sample mean satisfy this condition. Importantly, the Hill estimator is

invariant to the scale parameter implying that estimates of the tail behavior of a distribution

do not depend on scale transformations of the data.

It is of more interest to explore the asymptotic behavior of ψ̂R
u . For µ fixed, this is

driven by the limiting convergence of the extreme order statistics yi:n, with i = 1, . . . , k+1,

where k → ∞ and k/n→ 0. This condition entails the divergence of the order statistics to

infinity (for unbounded distributions) such that ψ̂R
u

p→ 0, as the sample size increases, and

follows that ψ̂R
Hs−ψ̂R

H

p→ 0. Using simple algebra, this result also implies the convergence in

probability between the estimators of the tail parameter ξR such that ξ̂RHs − ξ̂RH as n→ ∞.

This result is, however, quite misleading in finite samples since the magnitude of the

location parameter µ and the speed of divergence of the order statistics (driven by the tail

behavior of the distribution) have an important effect on the estimates of the Hill estimator

in finite samples. The following section illustrates these effects in finite samples and extends

the analysis to regression-based estimators.

4.3 Simulation exercise

The following simulation experiment compares the finite-sample performance of the Hill

estimator in (7) and Gabaix and Ibragimov’s (2012) regression-based estimator introduced

in (9). The aim of the simulation exercise is to assess the empirical performance of these

estimators and compare it against the performance of the estimators constructed from stan-

dardized order statistics. We consider four estimators of the tail parameter ξR shaping the

decay of the parent distribution on the right tail: (1) Hill estimator in (7) from the unstan-

dardized order statistics; (2) same as (1) but from the standardized order statistics; (3) the

OLS estimator of the regression equation (9) from the unstandardized order statistics; (4)

same as (3) but using the standardized sequence of order statistics.

The Monte Carlo experiment consists of the following steps. To gauge the performance

of the estimators as a function of the magnitude of the tail decay, we consider the family

of symmetric Student-t distributions with degrees of freedom θ = {2, 5, 10, 20} as data

generating process (DGP). Note that for Student-t distributions the tail parameter ξ is
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equal to the degrees of freedom of the distribution. The DGP is completed by the simulation

of two different types of processes given by location parameters µ = {1, 10}. These processes
are simulated for a sample size n = 1000 and for a very large sample size given by n =

10, 000. By doing so, we aim to capture the differences between the unstandardized and

standardized versions of the estimators in large samples. Both estimators require the tuning

of the nuisance parameter k. Following the related literature on tail parameter estimation,

we compute a battery of estimators of ξ given by values of k in the range [10, 100].

This procedure is repeated forM = 500 independent draws of n observations to compute

the root mean square error associated to each estimator as RMSE(ξ) =

√
M∑

m=1

(ξ̂ − ξ)2/M .

Figure 1 reports the RMSE of the estimators for µ = 1 and Figure 2 the RMSE for

µ = 10. Left panels of both figures report the RMSE for n = 1000 and right panels for

n = 10, 000. The dotted lines correspond to the standardized estimators and the solid lines

to the unstandardized ones. The thick lines correspond to the Hill estimators and the thin

lines to the regression-based estimators. The comparison of the results across figures shows

the importance of standardizing the order statistics before estimating the tail decay. The

RMSE is significantly smaller for the standardized estimators than for the unstandardized

versions independently of the sample size. In fact, the differences remain in Figure 2 even

for n = 10, 000.

The comparison of the results across columns in the same figure provides partial support

to the consistency of both types of estimators of ξ. The RMSE slightly decreases as a

function of the sample size. Note, however, that the estimators are constructed from a

fixed number of order statistics given by k, with k in the range [10, 100]. This range is fixed

for both n = 1000 and n = 10, 000. The improvement in tail estimation is because the

order statistics used for the estimation of ξ are more extreme as the sample size increases.

This empirical observation reflects the condition k → ∞ as k/n→ 0.

The comparison of the results across panels in the same column shows a decrease in

RMSE as the sample size increases. Importantly, there are important differences in the

performance of all estimators across values of the parameter ξ. The RMSE increases as a

function of ξ confirming the suitability of these estimators for heavy tailed distributions (ξ >

0), however, for distributions with exponential decay (ξ > 20) the performs is significantly

weaker. These findings hold for both values of µ and the tail parameter ξ.

The comparison of the results for single panels allows us to compare the performance

between the Hill estimator and the regression-based estimator. The results show some

heterogeneity across panels but the overall conclusion is that Hill type estimators perform
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better than regression based methods for small values of the location parameter. The

opposite result is found for large values of µ. Nervertheless, the standardized Hill estimator

tends to perform best for both DGPs.

Similar results are found for the analysis of the left tail and negative values of the

location parameter and are omitted for space considerations.

5 Geographical heterogeneity in extreme warming

The recent literature modeling the dynamics of temperatures has found strong empirical

evidence of heterogeneity in the evolution of temperatures over time and across regions,

see GG2020 and GG2024. The presence of heterogeneity is usually interpreted as evidence

of positive trends in distributional characteristics of the distribution of temperatures such

as the mean, median, and the quantile process, that is usually accompanied by a negative

trend in dispersion measures. The aim of this section is to complement and extend these

studies by analyzing the dynamics of extreme temperatures over time. To do this, we apply

the trend tests introduced in Definitions 3 and 4 for the tail parameter ξ. The above tests

are applied to a panel of monthly temperatures for different regions of the world.

5.1 Data

Our dataset is obtained from the Climatic Research Unit (CRU) at University of East An-

glia. The CRU offers monthly and yearly data of land and sea temperatures in both hemi-

spheres from 1850 to the present, collected from different stations around the world. Had-

CRUT5 is a global temperature dataset, providing gridded temperature anomalies across

the world, as well as averages for the hemispheres and for the globe as a whole. CRUTEM5

and HadSST4 are the land and ocean components of this overall dataset, respectively. This

database (in particular, the annual temperature of the Northern Hemisphere) has become

one of the most widely used to illustrate GW from records of thermometer readings. These

records form the blade of the well known “hockey stick” graph, frequently used by aca-

demics and other institutions, such as, the IPCC. Our study period begins in 1960 and

ends in 2022. This period is the subject of the majority of climatological studies due to

the intensity with which the phenomenon of climate change is beginning to manifest itself.

To guarantee the stability of the characteristics over the whole sample, we select only

those month-stations units with data for all years in the sample period, which forces us to

reduce the sample size. We have also removed stations that present problems of inhome-
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geneities (Jones et al., 2012). Applying this procedure to the sample period 1960-2022, we

have n=126,900 month-stations units belonging to 11,797 stations. These characteristics

are constructed for each year using monthly temperature records. In addition to the globe

analysis, we adopt regional and geographical perspectives to make more accurate predic-

tions at the regional level. To do so, we carry out two separate analyses. First, we divide

the globe into eight geographical areas: the Arctic Polar Circle, Europe, North America,

South America, Asia, Africa, Australia and Antarctic. Applying the strategy described

in the previous paragraph, the unit month-station number for the globe is 126,900, 4,332

for the Arctic obtained from 478 stations, 34,368 for Europe obtained from 3,537 stations,

27,348 for North America obtained from 2,447 stations, 10,164 for South America obtained

from 478 stations, 38,904 for Asia obtained from 4,939 stations, 12,180 for Africa obtained

from 288 stations, 5,424 for Australia obtained from 467 stations and, finally, 588 for the

Antarctic obtained from 77 stations. Rather than using an exact political classification the

stations are selected according to a rectangle formed by the latitude and longitude that

circumscribes each continent. In this way, the latitude variable is given priority over other

classifications that strictly consider the political variable. Figure 3 shows the distribution

of the selected stations according to the unit month-station criterion for the whole globe

for the period 1960-2022, and Figure 4 the different geographical areas into which we have

divided the globe.

5.2 Distribution of annual temperatures

This section reports the tail behavior of the distribution of annual temperatures for eight

regions recorded over the period 1960 to 2022. These regions are the Antarctic, the Arctic

region, Africa, Asia, Australia, Europe, North America and South America. Figure 5

reports the dynamics of average temperatures for each region. There is a positive trend in

most of them that suggests that the average annual temperature is warming over time.To

obtain further insights into the distribution of annual temperatures we report in Figures

6 and 7 nonparametric kernel estimates of the density function for each region. Each

panel includes 63 density functions, with each of them corresponding to a different year

of the sample and being obtained as the cross-sectional density function estimated from

observations recorded at different weather stations in a given region over a given year. The

plots reflect very different patterns across regions.

The distributions of annual temperatures for Asia (b), North America (c), South Amer-

ica (d) and the Arctic region (g) are left skewed. The interpretation of these results is,
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however, very different across these regions. For the Arctic region, Asia and North Amer-

ica, the left skeweness is an indication of the presence of extreme negative temperatures.

For Asia and North America, these events reflect the heterogeneity of these territories that

include areas near the Arctic region and can reach temperatures around −40o celsius. For

the Arctic, these temperatures can reach values close to −60o celsius. The source for the left

skewness for South America is different. The support of the distribution of temperatures

in this region is in the range [0, 40] and the mode takes values close to 30o celsius but there

are temperatures that are well below this value. Temperatures on the left tail of the distri-

bution are obtained from weather stations in the Southern Cone of the continent whereas

temperatures on the right tail are obtained from weather stations near the Equator. The

nonparametric kernel density functions for Europe (a) and Australia (f) are symmetric,

however, the support of these distributions is quite different and reflect different features

of the distribution and dynamics of annual temperatures that will be discussed below. The

density functions for Africa (e) and the Antarctic region (h) are different from the rest.

The distribution of Africa is right-skewed with a mode around 15o celsius and the right tail

reaches values near 40o celsius. The left tail of the distribution is bounded by temperatures

near zero degrees celsius. The kernel density function for the Antarctic region is bimodal

and reflects the strong heterogeneity in temperatures across weather stations. The Western

region is colder than the Eastern region.

5.3 Analysis of trends in extreme temperatures

In the following exercise we study the tail behavior of the distribution of annual temper-

atures. Table 1 reports a battery of summary statistics for the time series of estimates of

the tail parameter ξ obtained from the distribution of temperatures standardized by the

cross-sectional sample mean and standard deviation at each point in time. Each tail is con-

sidered separately; to add robustness to our findings, the estimates of the tail parameter are

computed using different versions of Hill estimator. Methods 1, 2 and 3 correspond to the

Huisman et al (2001) correction of three well known estimators of the tail index: Method

1 is the small-sample correction of the Hill estimator; Method 2 is the correction of the

generalized least square estimator proposed in Aban and Meerschaert (2004), and Method

3 is the correction of the least squares estimator obtained in Tripathi (2014). Estimates

of the tail index are obtained for each region and year of the evaluation period to obtain

a sample of 63 time series estimates for each region. The results in Table 1 confirm the

reliability of the tail parameter estimates as the results are very similar across estimation
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methods. The sample standard deviations are, in general, small providing further support

to the average of the tail parameter estimates as informative measures of tail behavior in

both tails. The minimum and maximum statistics provide additional information on the

time series dispersion of the parameter estimates of ξ.

The following discussion is based on the sample average of the tail parameter estimates

reported in the left panel of Table 1, the trend tests in Table 2, and the plots reported in

Figure 8 with the evolution of the tail parameters over the evaluation period (1960-2022).

The results reveal important heterogeneity across tails and geographical regions. The first

region is the Globe that pools together the observations from all regions. The results for

this case show important differences across tails. The left tail exhibits a polynomial decay

given by values of ξ around 7.5 whereas the right tail exhibits a faster tail decay given

by estimates around 17. The trend test is not statistically significant for the left tail but

is highly significant (at 1% significance level) providing statistical evidence of a negative

trend in the sequence of tail parameter estimates ξ̂Rt . The interpretation of this test is

that the tail parameter decreases over time entailing a fatter tail and, hence, an increased

likelihood of positive extreme events. This tail behavior is categorized in Definition 2 as

extreme warming of type WE2. The dynamics of the tail parameters for the Globe are not

reported for space considerations.

The tail behavior for the distribution of annual temperatures for North America, Asia

and the Antarctic region shows similar patterns in both tails but the magnitude of the slope

coefficient for North America and Asia is twice as large as for the Globe. The three regions

exhibit extreme warming of type WE2. The negative trend in the tail parameter estimates

is clearly visible in panels (b) and (c) of Figure 8 and panel (h) of Figure 9. For North

America, the estimate of the tail parameter in 1960 is close to exponential with a value near

20. The time series has steadily decreased over the last sixty years and the estimate of the

tail parameter ξ for 2022 is around 16. The behavior of the right tail parameter for Asia

is similar although the magnitude of the trend parameter is slightly stronger and there are

also some interesting nonlinearities during the period 1970-1990. The case of the Antarctic

region reveals stronger polynomial decay in both tails than for the other two regions but

there is still clear evidence of a negative trend with values of the tail parameter close to 5

in the last years of the sample.

The case of Europe reveals an average fatter tail in both regions than for Asia and North

America. However, the trend test in table 2 does not uncover a trend in any of the tails.

Similarly, the dynamics of the time series of parameter estimates reported in panel (a) of
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figure 8 are stable over the evaluation period. These patterns are compatible with the type

WE0 that corresponds to the absence of extreme warming in the tails. This does not imply

that there is warming in other distributional characteristics such as the mean (see figure 5)

and findings in GG2020 and GG2024. Similar results for the trend tests are found for Africa.

There is no statistical evidence of a time trend in either tail of the distribution of annual

temperatures. However, in contrast to Europe, the average tail estimates reveal fatter

tails for Africa than for Europe indicating a higher probability of extreme temperatures

for this region. This is confirmed by the evolution of the tail parameter estimates reported

in panel (e) of figure 9. Similar pattern in the tails is observed for the Polar region. The

tail behavior in the left tail exhibits fatter tails than for the right tail indicating a greater

probability of extreme events in the left tail, however, there is no evidence of a time trend

in the evolution of temperatures for this region. These patterns are consistent with the

type of warming WE0.

The results for South America and Australia point in a different direction. The warming

process in the extremes is different. The sign of the slope coefficient of the regression

equation (5) is positive for both tails and statistically significant in all cases except the left

tail of South America. These results provide evidence of a thinner left tail over time for

both regions. This behavior of the extreme temperatures in the left tail is classified as type

WE1 in definition 2 and corresponds to an increase in the negative extreme temperatures

resulting in milder temperatures in the left tail of the distribution. The average value

of the tail parameter estimates is, nevertheless, lower than for the regions in the North

hemisphere being around 5 and 8 for South America and Australia, respectively. The

results for the right tail are similar quantitatively indicating a positive trend that is clearly

visible from panels (d) and (f) in figure 9. The interpretation is, however, completely

different. The positive trend in the right tail indicates a lower probability of extreme

positive temperatures over time. The results from both tails combined provide evidence of

a decrease in the dispersion of temperatures for these regions over time. Temperatures shift

to the right of the distribution with negative extreme shifting faster and positive extremes

shifting slower than the rest of quantiles.

The above results show clear heterogeneity in the warming process of extreme temper-

atures. Importantly, our empirical findings suggest evidence of four different patterns in

the behavior of extreme temperatures that seem related to the geographical location of

the regions under investigation. The only exception is the Antarctic region that shares

similarities in tail trend behavior with North America and Asia in both tails.
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The following exercise aims to test for the presence of cotrending in the dynamics

of extreme temperatures for regions sharing the same patterns. We focus on the pairs

North America and Asia; Europe and Africa, and South America and Australia. To do

this, we implement the test in Definition 4 for the presence of cotrending between the tail

parameters of different pairs of regions. The purpose of the analysis is to assess statistically

if the warming process in the extremes is at the same pace across regions. We focus on pairs

of regions that already show evidence of warming in the extremes of a specific type (WE1

or WE2) and that show similar patterns. In particular, we test for cotrending between the

right tail parameters of Asia and North America, and the left and right tail parameters

of South America and Australia. We complete the analysis with the comparison of tail

dynamics between the Arctic region and Europe in the left tail. Although the estimates

of ξ are not statistically significant for any of these regions the magnitude of the slope

parameters in Table 2 is roughly similar. In this scenario it may be of interest to test if

the trends in the tail parameters for these regions are similar providing further support

to the hypothesis that the minimum temperatures for Europe and the Arctic region are

warming up at the same pace than the remaining quantiles of the distribution of annual

temperatures.

The results of the test of cotrending in the tails are presented in Table 3. Our analysis is

concerned with modeling long-term dynamics, hence our interest in the analysis of trends.

The overall conclusion of the analysis is that there is no statistical evidence to reject

the hypothesis of cotrending in the tails between any pair of the above regions. A more

detailed analysis reveals that for the pair Asia-North America the slope coefficient γ of

the regression model (6) in the right tail is −0.004 and the corresponding p-value is 0.886.

Similarly, the comparison of the dynamics of the tail parameters in the left tail for the pair

South America-Australia yields a parameter estimate of −0.005 with a p-value of 0.437. For

the right tail, the parameter estimate for γ is 0.013 and the corresponding p-value is 0.515.

Finally, the comparison of the dynamics in the left tail for the pair Arctic region-Europe

reports a value of −0.003 for the slope parameter estimate in the left tail, with a p-value

of 0.910, and −0.014 [0.590] for the right tail.

The above results show clear evidence of cotrending in the tails, however, we also find

significant statistical evidence to reject the equality of the tail parameters for all pairs and

in both tails. This is captured through the intercept of the regression equation (6) and

also shown by the difference in magnitude of the tail parameters across regions observed in

Figures 8 and 9.
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6 Conclusion

Understanding the heterogeneity in worldwide temperatures is important for predicting

future dynamics in climate change and guide policy. In this paper, we have analyzed the

dynamics of extreme temperatures using the methodology proposed in GG2020 to detect the

presence of time trends in the distributional characteristics of annual temperatures. This

paper complements previous studies by focusing on the dynamics of the tail parameter for

both tails. For a very general class of distributions, this parameter completely drives the

tail decay.

As a byproduct of our study, we have also analyzed the finite-sample performance of

popular estimators of the tail parameter such as the Hill estimator and regression-based

estimators. Taking advantage of a thorough simulation study, we conclude that the versions

of these estimators constructed from standardized order statistics outperform the typical

estimators constructed from unstandardized sequences.

Using a panel of observations on monthly temperatures from a large cross section of

weather stations, we have estimated the tail parameters from cross-sectional distributions

applied to each region and obtained a time series of tail parameter estimates over the pe-

riod 1960 to 2022. Our empirical results show clear heterogeneity in the warming process

of extreme temperatures. There are four different patterns that seem related to the geo-

graphical location of the regions under investigation. Thus, North America, Asia and the

Antarctic regions are affected by a warming process of type WE2. Europe, Africa and the

Arctic region do not exhibit warming in the extremes despite a steady increase in their

quantiles (see GG2020) suggesting that the behavior of the distribution of temperatures is

compatible with a type WE0. In the South hemisphere, South America and Australia show

a pattern that is compatible with type WE1 and suggests warming of extreme temperatures

in the left tail. Both regions also show a drop in dispersion in the extreme temperatures

in the right tail which suggests that the distribution of annual temperatures is becoming

more concentrated around the mode.
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Table 2: Trending analysis for standardized temperatures under regression equation (5).

Left tail Right tail
Region/Method 1 2 3 1 2 3

Globe -0.012 -0.011 -0.010 −0.038∗∗ −0.037∗∗ −0.033∗∗

[0.189] [0.205] [0.244] [0.012] [0.013] [0.014]
Europe -0.010 -0.010 -0.009 0.007 0.007 0.005

[0.700] [0.699] [0.667] [0.676] [0.695] [0.739]
Asia 0.002 0.001 0.002 −0.080∗∗∗ −0.077∗∗∗ −0.070∗∗∗

[0.953] [0.981] [0.957] [0.000] [0.000] [0.000]
North America 0.008 0.008 0.007 −0.076∗∗∗ −0.073∗∗∗ −0.068∗∗∗

[0.481] [0.477] [0.470] [0.005] [0.005] [0.005]
South America 0.006 0.006 0.006 0.034∗ 0.033∗ 0.031∗

[0.142] [0.143] [0.145] [0.083] [0.081] [0.078]
Africa 0.000 0.001 0.001 -0.007 -0.006 -0.005

[0.920] [0.900] [0.853] [0.224] [0.226] [0.233]
Australia 0.011∗∗ 0.011∗∗ 0.009∗ 0.021∗∗∗ 0.021∗∗∗ 0.019∗∗∗

[0.040] [0.044] [0.054] [0.005] [0.005] [0.005]
Arctic region -0.013 -0.012 -0.012 -0.007 -0.006 -0.005

[0.156] [0.151] [0.139] [0.698] [0.706] [0.724]
Antarctic region 0.003 0.003 0.002 −0.039∗ −0.036∗ −0.028∗

[0.391] [0.396] [0.411] [0.089] [0.089] [0.093]

Note: P-values are in square brackets. ∗, ∗∗, ∗∗∗ denote statistical significance of the slope

parameter estimate β of the LS regression equation (5) at 10%, 5% and 1% significance

levels, respectively. The response variable is the sequence of tail parameter estimates ξ̂Lt

and ξ̂Rt obtained under different estimation methods. Method 1 is the Huisman et al esti-

mator constructed from a sequence of Hill estimators with different thresholds. Similarly,

Method 2 is based on a sequence of best linear unbiased estimators with different thresh-

olds; and Method 3 is based on a sequence of OLS estimators. The time series of estimates

corresponds to annual data from 1960 to 2022.
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Table 3: Cotrending analysis for standardized temperatures under regression equation (6).

Left tail Right tail
Region/Method 1 2 3 1 2 3
Asia - North Am. -0.008 -0.007 -0.005 -0.004 -0.004 -0.003

[0.714] [0.738] [0.794] [0.886] [0.892] [0.904]

South Am. - Aust. -0.005 -0.003 -0.003 0.013 0.013 0.012
[0.437] [0.460] [0.512] [0.515] [0.518] [0.491]

Arctic - Europe -0.003 -0.003 -0.002 -0.014 -0.013 -0.011
[0.910] [0.910] [0.917] [0.590] [0.607] [0.647]

Note: P-values are in square brackets. ∗, ∗∗, ∗ ∗ ∗ denote statistical significance of the

slope parameter estimate γ of the LS regression equation (6) at 10%, 5% and 1% signifi-

cance levels, respectively. The response variable is the difference of tail parameter estimates

ξ̂At − ξ̂Bt , with A and B the regions on the first column. Method 1 is the Huisman et al

estimator constructed from a sequence of Hill estimators with different thresholds. Sim-

ilarly, Method 2 is based on a sequence of best linear unbiased estimators with different

thresholds; and Method 3 is based on a sequence of OLS estimators. The time series of

estimates corresponds to annual data from 1960 to 2022.
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Figure 1: Root mean square error for Hill estimator in (7) and regression-based estimator
in (9) for n = 1, 000 (left panel) and n = 10, 000 (right panel); k characterizes the threshold
sequence xk:n and ranges in the interval [10, 100]. The data generating process is a Student-
t distribution with ξ degrees of freedom, with ξ = {2, 5, 10, 20}, and location parameter
µ = 1.
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Figure 2: Root mean square error for Hill estimator in (7) and regression-based estimator
in (9) for n = 1, 000 (left panel) and n = 10, 000 (right panel); k characterizes the threshold
sequence xk:n and ranges in the interval [10, 100]. The data generating process is a Student-
t distribution with ξ degrees of freedom, with ξ = {2, 5, 10, 20}, and location parameter
µ = 10.
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Figure 3: Location of weather stations 1960-2022.
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Figure 4: Division of the globe into geographical regions characterized by continents.
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(a) Europe (b) Asia

(c) North America (d) South America

(e) Africa (f) Australia

(g) Artic region (h) Antartic region

Figure 5: Dynamics of mean temperatures by continents over the period 1960-2022. Dotted
lines are 95% confidence intervals.
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(a) Europe (b) Asia

(c) North America (d) South America

Figure 6: Kernel density function estimates for annual temperatures (1960-2022).

34



(e) Africa (f) Australia

(g) Arctic region (h) Antarctic region

Figure 7: Kernel density function estimates for annual temperatures (1960-2022).
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(a) Europe (b) Asia

(c) North America (d) South America

Figure 8: Dynamics of Huisman et al tail index estimator based on Hill estimator for annual
temperatures (1960-2022).
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(e) Africa (f) Australia

(g) Arctic region (h) Antarctic region

Figure 9: Dynamics of Huisman et al tail index estimator based on Hill estimator for annual
temperatures (1960-2022).
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