Risk and transaction cost-awareness portfolio selection based on reinforcement learning

(3° year paper) Contact email: <u>849201@unizar.es</u>

MOTIVATION

- 1. The primary motivation for portfolio management is to optimize returns while managing risk.
- 2. Traditional portfolio management models may struggle to capture the complexity of the financial market in real-time.
- 3. There is a growing trend using deep reinforcement learning to make investment decisions and handling high dimensional data.

METHODS

- 1. Determined the asset allocation problem under portfolio constraints by considering the transaction cost and risk aversion in the portfolio selection problem.
- 2. Implemented Markov Decision process for portfolio trading. The objective reward function is denoted as:

$$\mathbf{p}_{t} = \mathbf{p}_{t}^{\mathrm{T}} \mathbf{m}_{t} - \underbrace{\boldsymbol{\beta} \boldsymbol{\sigma}_{t}^{2}}_{\text{Risk cost}} - \underbrace{\boldsymbol{\xi} \mathbf{p}_{t}^{\mathrm{T}} | \mathbf{k}_{t}}_{\text{Transaction cost}}$$

3. TD3-based portfolio trading algorithm:

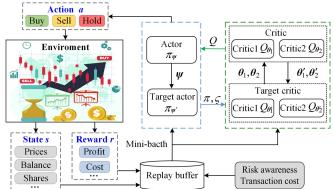
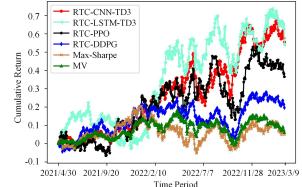


Fig. 1. The TD3-based portfolio trading framework

OBJECTIVES

Propose a DRL-TD3-based risk and transaction cost-sensitive portfolio that combines advanced exploration strategies and dynamic policy updates.


Program in Economy

Maximize the expected returns of a portfolio over time at a given risk in high-dimensional state spaces.

DIRECTOR(es): Jose Olmo and Majed Atwi

Develop trading strategies that can outperform traditional methods.
MAIN RESULTS

✓ Empirical results and analysis on DJIA stocks

Method	RTC-CNN	RTC-LS	RTC-CNN	RTC-CNN-	Max-Sharpe	MV
	-TD3	TM-TD3	-DDPG	PPO		
Annual Return (%)	26.91	26.20	10.18	18.28	2.62	3.25
Cumulative Return (%)	55.53	53.92	19.62	36.50	4.91	6.10
Annual Volatility (%)	22.01	29.02	17.28	28.08	19.97	13.42
Sharpe Ratio	1.19	0.95	0.65	0.74	0.23	0.31
Max Drawdown (%)	19.11	20.61	18.58	23.52	21.38	16.01
Calmar Ratio	1.41	1.27	0.55	0.78	0.12	0.20

Fig. 2. Cumulative return performance comparisons using different portfolio trading strategies for a risk aversion coefficient β =0.005 and transaction cost rate ξ =0.05%.

✓ Empirical results for S&P100 index

Fig. 3. Cumulative return performance comparisons using different portfolio trading strategies for a risk aversion coefficient $\beta=0.005$ and transaction cost rate $\xi=0.05\%$

Table 1. Performance measures of different portfolio methods when β =0.005 and ξ =0.05%.

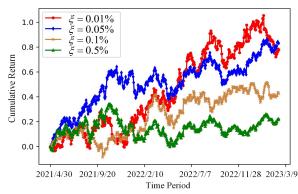


Fig. 4. Cumulative return performance of the RTC-CNN-TD3based portfolio under different transaction cost rates ξ for a risk aversion coefficient β =0.005.

MAIN REFERENCES

•Reference 1. Almgren, R., & Chriss, N. (2001). Optimal execution of portfolio transactions. Journal of Risk, 3, 5–40.

•Reference 2. Reference 3. Cui, T., Ding, S., Jin, H., & Zhang, Y. (2023). Portfolio constructions in cryptocurrency market: A CVaR-based deep reinforcement learning approach. *Economic Model, 119.*, • Reference 3. Zeng, Y., & Klabjan, D. (2018). Portfolio optimization for American options. *Journal of Computational Finance, 22*(3), 37-64.

> V Jornada de Posters de Doctorado de la Facultad de Economía y Empresa III Congreso IEDIS en Empleo, Sociedad Digital y Sostenibilidad